
www.manaraa.com

Synergistic verification and validation of systems and software
engineering models

Yosr Jarrayaa*, Andrei Soeanua1, Luay Alawneha2, Mourad Debbabia3

and Fawzi Hassaı̈neb4

aComputer Security Laboratory, Concordia Institute for Information Systems Engineering,
Concordia University, 1515, Ste Catherine West, EV-7-642, Montreal, Quebec, H3G 2W1 Canada;

bCapabilities for Asymmetric and Radiological Defence and Simulation, Defence Research and
Development Canada – Ottawa, 3701, Carling Avenue, Ottawa, Ontario, K1A-0Z4 Canada

(Received 12 November 2008; final version received 26 January 2009)

In this paper, we present a unified approach for the verification and validation of
software and systems engineering design models expressed in UML 2.0 and SysML
1.0. The approach is based on three well-established techniques, namely formal
analysis, programme analysis and software engineering (SwE) techniques. More
precisely, our contribution consists of the synergistic combination of model checking,
static analysis and SwE metrics that enables the automatic and efficient assessment of
design models from static and dynamic perspectives. Additionally, we present the
design and implementation of an automated computer-aided assessing framework
integrating the proposed approach. Moreover, we discuss the related technical details
and the underlying synergism. Finally, we illustrate the proposed approach by assessing
a design case study that is composed of state machine and sequence diagrams.

Keywords: software and systems engineering; UML; SysML; design models;
verification and validation; model checking; software metrics

1. Motivations

Modern modelling languages for software and systems, including the most prominent ones,

namely UML 2.0 (Object Management Group 2003) and SysML 1.0 (Object Management

Group 2006) emerged in order to cope with the continuous advancement in software and

systems design. The aforementioned modelling languages are playing an increasingly

important role in software and systems engineering (SE) processes. Software engineering

can be defined as the application of a systematic approach to the development, operation

and maintenance of software (IEEE 1990), while SE represents an interdisciplinary

approach that enables the realisation of successful systems focusing on the system as a

whole (INCOSE 2004). Ubiquitous systems such as hi-tech portable electronics, mobile

devices, automated teller machines (ATMs) as well as many other advanced technologies

present in aerospace, automotive or telecommunication platforms represent important

application fields of SE. However, nowadays the critical aspect of software and systems

design is not represented by conceptual difficulties or technical shortcomings, but it is

rather related to the increased difficulty of assuring specification-compliant designs.

ISSN 0308-1079 print/ISSN 1563-5104 online

q 2009 Taylor & Francis

DOI: 10.1080/03081070903029253

http://www.informaworld.com

*Corresponding author. Email: y_jarray@encs.concordia.ca

International Journal of General Systems

Vol. 38, No. 7, October 2009, 719–746

www.manaraa.com

To that effect, the process of design and development mandates a strong, sound and

cost-effective Verification and Validation (V&V) process.

Verification is the process of evaluating a system to determine whether the products

of a given development phase satisfy the conditions imposed at the start of that phase

(IEEE 1990). Conversely, validation is defined as the process of evaluating a system to

determine whether it satisfies the specified requirements (IEEE 1990). The V&V process

can be a major bottleneck in the life cycle of any complex software or SE product since it

may take up to 80% of the total development effort (Averant 2001). Additionally, a lot of

software and systems are required to meet a very high level of reliability, security and

performance especially in safety-critical areas. Therefore, ensuring that their predefined

requirements are met and that they behave as expected often represent some very

challenging issues. However, in many modern engineering disciplines, conventional V&V

methods such as those involving testing and simulation are not always the most adequate.

Conversely, using automatic and more exhaustive techniques (e.g. model checking)

complementary to simulation provides a higher level of confidence since they have

rigorous and well-defined bases.

Our main objective is to derive a unified approach for the V&V of design models in

software and SE. The underlying models need to be subjected to an efficient V&V process,

involving formal techniques complementary to simulation. Our approach for V&V in

software and SE, briefly presented in Alawneh et al. (2006), is based on a proposed

synergy between three major techniques: formal verification, programme analysis and

SwE techniques. By formal verification, we mean model checking. By programme

analysis, we mean data and control flow analysis among other techniques. By SwE

techniques, we mainly intend to use software metrics. Specifically, for assessing the

quality of a design from the structural point of view, we advocate the use of empirical

methods such as metrics, which are used extensively to measure quality attributes of

object-oriented software design. Conversely, with respect to the dynamic behaviour,

model checking turns out to be an appropriate choice to assess behavioural aspects since it

is automatic, exhaustive and has a solid mathematical basis. Finally, in order to address

model checking scalability issues, we propose the use of program analysis techniques,

such as control and data flow analysis, which may tackle the state space explosion problem

while restricting the verification scope to specific properties in the model. More details

with respect to this issue are provided in Section 3.

The benefits of the proposed approach are manifold. First, our approach inherits rigour

from the use of formal techniques. Moreover, it is cost-effective since it is applied in the

early stages of the development process, namely during the design phase. This is because

early and efficient identification of flaws in the design can have significant economical

advantages if compared to the same task done during the maintenance phase (Boehm and

Basili 2001). Furthermore, it is entirely automatic, thus requiring no related background for

systems engineers. In addition, different qualitative and quantitative attributes can be

measured using SwEmetrics in order to assess the overall design quality. Also, to the best of

the knowledge of the authors, this is a heretofore unattempted endeavour in using these three

techniques synergistically combined in a comprehensive and automated V&V framework.

The rest of the paper is structured as follows. We survey the related work in Section 2.

Section 3 presents our approach with details related to our methodology and our V&V

framework. Section 4 is dedicated to the assessment of an ATM design case study that is

composed of state machine and sequence diagrams. The case study is meant to depict the

structure of a hypothetical real-life system. Finally, we conclude by discussing our

contributions and future work in Section 5.

Y. Jarraya et al.720

www.manaraa.com

2. Related work

In this section, we survey the state of the art in terms of V&V of software and SE design

models. Particularly, we focus on UML 2.0 and SysML 1.0 design models. We present

hereafter the research initiatives concerning three of the most important and widely used

UML diagrams (Ambler 2004), namely state machine, sequence and class diagrams.

Concerning the V&V of SysML-based design models, to the best of our knowledge,

there are only a few initiatives (Viehl et al. 2006; Jarraya et al. 2007). In Jarraya et al.

(2007), a proposal is advanced for performance evaluation of systems given their

design models expressed as SysML activity diagrams endowed with time annotation.

The discrete-time Markov chains model is considered as a semantic interpretation of such

diagrams. The approach is based on probabilistic model checking of the underlaying

probabilistic model using PRISM.5 Viehl et al. (2006) explore formal and simulation

based performance analysis of systems specified with UML2/SysML. The detection of

potential conflicts on shared communication resources in a system based on its target

architecture is addressed. This is based on defining the global timing behaviour of

the system and the related violations. Time-annotated UML 2.0 sequence diagrams are

considered together with UML 2.0 structured classes/SysML assemblies for describing the

system architecture.

Few approaches studying the assessment of the UML 2.0 state machine diagrams have

been advanced. Fecher et al. (2005) present an attempt to define a structured operational

semantics for UML 2.0 state machine in terms of sets and relations. This work deals with

major issues in UML 2.0 features including shallow and deep history, join and fork

pseudostates together with entry/exit actions and do-activity. However, junction and

choice pseudostates, completion event/transition and communicating state machines are

not considered. Similarly, Zhan and Miao (2004) propose a formalisation using the general

purpose Z language. The semantic model is then used to transform state machine diagram

into a flattened regular expression state model. The latter is helpful in identifying issues

related to inconsistency and incompleteness and also in automatically generating test

cases. The paper takes into account well-formed state machine diagrams including simple

and composite states, concurrent and non-concurrent substates, simple and compound

transitions as well as firing priority among conflicting transitions. Nevertheless,

pseudostates such as fork/join and history are not considered.

Though we are interested in UML 2.0, it is worth mentioning other related work

concerning statecharts (renamed state machines in UML 2.0) described in earlier version

of UML. These approaches can be classified according to the used model checker. Some

authors use SPIN (Holzmann 1997), while others prefer the well-known symbolic model

verifier (SMV) (Hsin-Hung 2003). Latella et al. (1999a) as well as Mikk et al. (1998)

propose a translation of a subset of UML statecharts into SPIN/PROMELA using an

operational semantics as described in Latella et al. (1999b). The translation process is done

in two phases. First, the statechart is converted into an extended hierarchical automaton.

Then, the latter is modelled in PROMELA and subjected to model checking. Knapp et al.

(2002) present a prototype tool, HUGO/RT, for the automatic verification of a subset of

timed state machines and time-annotated collaborations UML 1.x diagrams. The model

checker UPPAAL is used to verify state machine diagrams (compiled to timed automata)

against the requirements described in the collaboration diagrams (compiled to observer

timed automaton).

Concerning sequence diagrams, Grosu and Smolka (2005) adopt nondeterministic

finite automata as their semantic model. A given diagram is translated into a hierarchical

International Journal of General Systems 721

www.manaraa.com

automaton and both safety and liveness Büchi automata are derived from it. These

automata are subsequently used to define a compositional notion of refinement of UML 2.0

sequence diagrams. Li et al. (2004) define a static semantics for UML interaction diagrams

to support verifying the well-formedness of interaction diagrams. The dynamic semantics

is interpreted as a trace-based terminated communicating sequential process that is used to

capture the finite sequence of message calls. Cengarle and Knapp (2004) propose a rich

trace-based semantics for UML 2.0 interactions. Störrle (2003) presents a partial order

semantics for time constrained interaction diagrams.

Class and package diagrams have been investigated in several research initiatives.

In a NASA (1995) technical report, metrics have been used to measure the quality

attributes of such diagrams. These metrics could be classified in two categories. The first

one deals with traditional metrics such as cyclomatic complexity while the second, which

is specifically related to object-oriented systems, involves metrics such as coupling, depth

of inheritance and the number of children. Genero et al. (2000) illustrate the use of

several object-oriented metrics to assess the complexity of a class diagram at the initial

phases of the development life cycle. More recently, topics like performing V&V by

applying audits and metrics to UML models are addressed in Gronback (2004). Audits

refer to the compliance to standards while metrics are viewed as numerical measurements

that allow the analysis of a model with respect to an already established scale indicating

the quality of the design.

Other initiatives prefer the use of model checking coupled with simulation (Ober et al.

2003, 2006). These emerged in the context of the Information Society Technologies

Omega project.6 Ober et al. (2003) describe the implementation of the defined semantics,

the definition of a property specification formalism, and the application of model checking

and simulation techniques in order to validate the design models expressed in the Omega

UML profile. This is achieved by mapping the design to a model of communicating

extended timed automata in IF (Bozga et al. 1999) format (an intermediate representation

for asynchronous timed systems developed at Verimag). Properties to be verified are

expressed in a formalism called UML observers, defined in the same paper. In another

work, Ober et al. (2006) present a case study of a complex system validation, namely the

control software of the Ariane-5 launcher. The experiment is done on a representative

subset of the system, in which both functional and architectural aspects are modelled using

Omega UML 1.x profile. The IFx, a toolset built on top of the IF environment, is used for

the V&V of both functional and scheduling-related requirements using simulation and

model checking functionalities.

Metrics for class diagrams were first initiated by Chidamber and Kemerer (1994),

where six metrics are proposed to measure the diagram’s complexity with respect to

different quality attributes such as maintainability, reusability, etc. Li and Henry

(1993) propose a metrics suite to measure several class diagram internal quality

attributes such as coupling, complexity and size. Metrics for an object-oriented design

(MOOD) suite was proposed by Abreu and Carapua (1994). These metrics are defined

at different levels of granularity instead of the class diagram level only. They are used

to measure the use of object-oriented concepts such as inheritance, data hiding and

polymorphism and to have an appraisal of their impact on the quality of the products.

Lorenz and Kidd’s (1994) metrics suite measures the static characteristics of software

design such as size, inheritance and internal attributes of the class. Last but not least,

Briand et al.’s (1997) metrics suite is defined at the class level and measures

interactions between classes. This set of metrics aims at measuring coupling between

classes.

Y. Jarraya et al.722

www.manaraa.com

3. Approach

As previously stated, the foundation of our approach lies in the harmonious synergy

between three well-established techniques that are: automatic verification (model

checking), SwE techniques (metrics) and programme analysis (static analysis).

The synoptic overview of the approach is depicted in Figure 1. Our proposal is targeting

UML2.0 or SysML 1.0 SE designmodels to be assessed alongwith the related requirements

and specifications. However, since these design models are graphically represented, they

have to be first encoded into their corresponding semantic model. The latter captures the

information and the meaning of the system design and allows us to proceed with an

automatic analysis. With respect to the requirements and specifications, they have to be

mapped to a set of formal properties in order to be checked on the design model.

The case for the proposed approach can be made based on the following reasoning.

A design model can be fully characterised by its structural and its behavioural

perspectives. Thus, both perspectives have to be assessed with appropriate techniques.

Empirical methodologies, such as those involving software metrics, can help assess the

quality of the structural architecture of the design. Complementary automatic verification

techniques such as model checking, can achieve a thorough assessment of the model

behaviour. However, such exhaustive means of verification require some strategies to cope

with the scalability issues (e.g. state explosion). In this context, techniques like

programme analysis, mainly data and control flow analysis, have the potential to address

these kind of problems. An important remark relates to the fact that the aforementioned

techniques are not simply combined, but rather synergistically leveraging each other.

First, model checking, which is a model-based verification technique, has been

successfully used for the verification of real applications, both software and hardware

systems such as digital circuits, controllers and communication protocols. It is

characterised with a higher degree of automation compared to other formal verification

techniques (e.g. theorem proving). Examples of model checkers include SPIN (Holzmann

1997), SMV (McMillan 1992) and NuSMV (Cimatti et al. 1999). This technique is used to

check whether the dynamic aspects of a model satisfy the specified properties (e.g. safety

Systems Engineering
Models

Requirements

Architecture

Design

CompilationFormalization

Formal
Language

Properties
Semantic
Models

Design
Assessment

Verification And Validation Module

Program
Analysis

Formal
Analysis

Software
Engineering
Techniques

Figure 1. Synoptic overview of the V&V approach.

International Journal of General Systems 723

www.manaraa.com

or liveness). Accordingly, we extract the semantic model from the behavioural diagram

we plan to check (e.g. state machine). Model checking has been successfully used in

medium-sized complex designs. Even though this technique was generally coupled with

severe scalability issues, numerous efforts tackled this problem in various ways, such as

on-the-fly model checking (Peled 1994), symbolic model checking (Burch et al. 1990) and

distributed on-the-fly symbolic model checking (Ben-David et al. 2000). In contrast to

these techniques, we propose the use of model slicing based on flow analysis (data and

control) as a complementary technique. Indeed, programme analysis techniques have been

applied successfully in compilation and programme verification and optimisation.

Particularly, model slicing can be used in the context of automatic formal verification to

cope with scalability issues. The objective is to narrow the scope of the model checking on

the part of the model that exhibits the dynamic subject of checking. This idea, which

represents the second layer of our approach, will be detailed in Section 4.3.

Finally, the third layer consists in a set of fifteen metrics that we have adopted from SwE

(Li and Henry 1993; Chidamber and Kemerer 1994; NASA 1995; Alawneh et al. 2006).

We advocate their use to assess quality attributes of various models. More precisely, this

feature enables us to assess the structural aspects of the systems model. We found in the

literature some initiatives about the use of metrics in SE. For instance, Tugwell et al. (1999)

outline the importance of metrics in SE, especially those related to complexity measurement.

In addition to applying metrics on the structural diagrams such as class diagram, we propose

their application on the semantic model that is derived from different behavioural diagrams.

For example, cyclomatic complexity and length of critical path could be applied on the

semantic model. Thus, the quality assessment of a given design can combine both the static

and dynamic perspectives. The aim is to be able to compare the structural and the

behavioural views qualitatively and quantitatively. For example, comparing the complexity

of a state machine diagram and the one of its corresponding semantic model can contrast how

close is the diagram structure reflecting the behaviour. If the complexity of the semantic

model is less than the one for the corresponding state machine diagram, this can imply that

some parts of the structure might be redundant or meaningless.

In the next section, we present our V&V framework and its underlaying components.

Moreover, we explain in details the related steps required to assess SE design models,

focusing on state and sequence diagrams as the behavioural diagrams and class diagram as

the structural ones.

3.1 V&V framework

Our V&V framework is intended to be used in conjunction with an SE modelling tool

wherefrom various design models can be fetched and subjected to the V&V task. Our

current choice is the ARTiSAN Real-time Studio,7 which is a modelling tool that supports

UML and SysML designs. The current version of our framework is composed of three core

components, as shown in Figure 2. First, we have the semantic compilation component

responsible for deriving the semantic model of a specific diagram. It communicates with

the model checker by providing the semantic model along with the properties to be

verified. Second, we have the metric computation component that is used for applying

metric algorithms. We have provided an interface that accesses the object repository of the

modelling tool and retrieves the needed information about the diagrams. Finally, the

assessment results component is devoted to the presentation of the parsed results. Should a

specified property fail, the trace provided by the model checker is analysed and the

relevant information is provided as a feedback to the designer.

Y. Jarraya et al.724

www.manaraa.com

The quality of an object-oriented system depends on different attributes such as

complexity, understandability, maintainability, stability and others. According to the type

of diagram, we have a class of metrics for structural diagrams and another for behavioural

ones. In the literature, many metrics were developed to measure the quality of software

systems, especially for structural diagrams namely class and package. However, until now,

they were not considered in the V&V of SE designs. With respect to behavioural diagrams,

we are currently in early stages of experimenting with metrics like the cyclomatic

complexity and the length of critical path. However, nominal ranges are not absolute but

tailored to the intended system’s characteristics such as size, specialisation and

redundancy.

Concerning the assessment of the behavioural aspects, we address the V&V of design

models consisting of sequence, activity and state machine diagrams. In this paper, we

elaborate more on our methodology with respect to the assessment of behavioural

diagrams, focusing on sequence and state machine diagrams. The main idea is to extract

from the studied behavioural diagrams the exhibited dynamics in order to derive the

corresponding semantic model. Once the latter is obtained, properties expressed in a

temporal logic, computation temporal logic (CTL) (Queiroz 2003) in our case, can be

verified on the semantic model using our V&V framework. The latter automatically

specifies and verifies CTL properties related to the absence of deadlock and to states

reachability. Furthermore, manual specification of customised properties is also possible

using intuitive macros, which are automatically expanded to their corresponding CTL

format. Thus, the designers can easily express properties without being required to know

formal logics or temporal formulas. Once the required properties are specified, the model

checker is invoked in order to assess the design.

In the next section, we present the semantic model that we defined and adapted for

each of the studied behavioural diagrams. Thereafter, we briefly explain the steps to

extract the semantic model from the state machine and sequence diagrams and then we

describe the general model checking procedure.

3.2 Semantic model for behavioural diagrams

It is generally accepted that any system that exhibits a dynamic behaviour of some kind

can be abstracted to one that evolves within a discrete state space. Such a system is able to

evolve through its state space assuming different configurations where a configuration

Figure 2. Architecture of the framework.

International Journal of General Systems 725

www.manaraa.com

is understood as the global state wherein the system abides at any particular moment.

Hence, all possible configurations summed up by the dynamics of the system and the

transitions thereof can be coalesced into what we will henceforth denote as a configuration

transition system (CTS). The latter represents the underlying semantic model of the system

behaviour. In essence, CTS is basically a form of automaton and it is characterised by a set

of configurations that include a set (usually a singleton) of initial ones and a transition

relation that encodes the evolution of the CTS from one configuration to another.

A configuration depends on the dynamic elements in the system while evolving in its state

space. Thus, the CTS definition may be parametrised as to be adapted to the behavioural

diagram for which it would represent the semantic model. Hence, the CTS can be used to

systematically generate the model checker input in order to assess the dynamics of a given

behavioural diagram.

Accordingly, given an instance of a behavioural diagram, one can define the

corresponding CTS provided that the following are defined: the set of dynamic elements

and the step relation that enables the systematic computation of the next possible

configurations from any given configuration. The dynamic elements characterising a

behavioural diagram can be abstracted to boolean or bounded range variables, where for

instance the true boolean value corresponds to the active status of some elements and the

false to the inactive status of some other elements. The set of dynamic elements for which

an order relation is established, form the definition of a configuration. For instance, a

configuration enclosed within a CTS can be represented by a set of variables that are active

simultaneously (bound to the boolean true value), while the transitions are labelled with

those elements that are required to trigger the change from the current configuration to the

next one. For instance, the dynamic elements of a state machine diagram can be

represented by the list of states and guards, which may characterise the corresponding CTS

of the diagram. For the special case of the state machine, which is a reactive model, there is

also a pre-established set of triggering events that are used to label the transitions. Thus,

the list of all states and guards may define all possible configurations (depending on the

boolean value bound to the diagram states and guards) whereas, events are used to label

the transitions between pairs of configurations.

Definition 3.1. A configuration c is a particular binding of boolean or bounded range

values to the set of variables included in the dynamic elements of a behavioural diagram

arranged according to an established ordering and that characterise the global state of the

system at a particular step in its evolution.

Note that the number of configurations summed up by any CTS must be bounded in

order to achieve tractability of the semantic model. That is, we have to assume a finite

number of dynamic elements in the diagram. Moreover, assuming that each variable vi

needs a finite amount ni of bits to be represented, then a configuration c belonging to the

CTS needs at most I ¼
P

ni, while the number of configurations is at most 2I.

Notwithstanding, the actual number of configurations is usually much smaller and is

restricted to the number of configurations reachable from the set of initial configurations.

Furthermore, the dynamic elements of the diagram are in the most of the cases confined to

boolean values.

Definition 3.2. A CTS corresponding to a given behavioural diagram is a tuple

(C,L, !), where C is a set of configurations of the diagram, L is a set of labels and

Y. Jarraya et al.726

www.manaraa.com

! # C £ L £ C is a ternary relation, called a transition relation. If c1, c2 [C and l [L,

the common representation of the transition relation is: c1�!
l

c2.

The CTS structure can also provide useful feedback to the designer. Thus, it can be

visualised in a suitable graph editor such as uDraw(Graph) (known also as daVinci).8 After

generating the CTS, it has to be encoded in the input language of the model checker for

further processing. The selected model checker for our V&V framework is the NuSMV

(Cimatti et al. 1999), which is an improved version of SMV (McMillan 1992).

3.3 Generation of the CTS

In what follows, we briefly present the necessary steps for generating the CTS

corresponding to each type of diagram. For the sake of illustration, where clarity should

prevail over completeness, we concentrate only on the state machine and sequence

diagrams.

3.3.1 Derivation of the state machine diagram’s semantics

A state machine diagram is a specification that thoroughly describes all the possible

behaviours of some dynamic model. Briefly, a state machine diagram is composed of

hierarchically organised states that are related with transitions labelled with events and

guards. Each state is either basic or composite. Composite states represent a further

aggregation of either sequential or concurrent substates. Each transition can be basically

categorised as either simple or inter-level. The former relates states of the same parent,

whereas, the latter relates states belonging to different parents. The state machine evolves

in response to events that trigger the corresponding transitions provided that the source

state is active, the transition has the highest priority, and the guard on the transition is true.

If transitions have conflict, priorities are assigned to decide which transition will fire.

Higher priority is assigned to those transitions whose source states are nested deeper in the

containment hierarchy. Moreover, the hierarchical structure of the state machine diagram

can be represented as a tree, where the root is the top state, the basic states are the leaves,

and all the other nodes are composite states. The tree structure can be used to identify the

least common ancestor of a source and a target state of a transition. This is useful in

identifying the states that will be deactivated and those that will be activated after firing a

transition.

In the following, we explain the procedure used for the generation of the CTS,

presented by Algorithm 1. Basically, we derive the CTS by proceeding iteratively with a

breadth-first construction procedure for all possible configurations reachable from a

current configuration picked at each iteration from the newly discovered ones. To avoid

redundancy, we consider only the active states in the CTS configurations, as the rest of the

states are implicitly inactives.

Algorithm 1 aims at constructing the list of all the reachable configurations identified in

the state machine, denoted by CTSConfList and the list of all the transitions linking these

configurations, denoted by CTSTransList. We denote by CurrentConf the current

configuration and nextConf its successor relatively to a specific event. As the state machine

diagrammay contain decision pseudostates, where a guard has to be evaluated to either true

or false, it might be possible to reach a list of configurations from the current configuration

where we consider both evaluations of the guard. Thus, the configurations of the CTS need

to be augmented with guard values corresponding to each configuration. We denote by

NextTransList the list of the outgoing transitions from the current configuration that

International Journal of General Systems 727

www.manaraa.com

contains a list of transitions with the corresponding event and the target configuration.

We have three functions defined as follows. First, a function pop(configurationlist) is

applied on a list and pops an element of it. Second, a function getNext(configuration,event-

list) is an abstraction of the procedure responsible for generating all possible transitions

outgoing from the current configuration having the event list. Thus, it returns a possibly

singleton list of transitions. Moreover, this function deals with the decision pseudostates by

considering all possible values of the guards. Whenever we have an event triggering a

transition that reaches a decision pseudostate, additional configurations will be generated

for the corresponding possible selection paths. Third, a function getDestination(transition)

that computes the next configuration given a specific transition.

The iterative procedure starts with FoundConfList containing only the initial

configuration of the state machine, denoted by initialConf. At each iteration, a

configuration is popped from FoundConfList and assigned to CurrentConf. If it is not

already a configuration in CTSConfList, it has to be added to it. Based on a list of possible

incoming events referred to as EventList and the current configuration, the function

getNext provides all the transitions sourcing from the current configuration along with its

corresponding event. The destinations of all the transitions have to be recorded. Thus, for

each transition in NextTransList we extract the destination configuration and add it to

FoundConfList if not present in CTSConfList. Then, NextTransList is added to

CTSTransList and the next iteration starts. The procedure stops when no element can be

found in FoundConfList.

3.3.2 Derivation of the sequence diagram’s semantics

A sequence diagram, as defined by UML 2.0, is composed of a set of lifelines, which

correspond to objects interacting in a temporal order. The abstraction of the most general

interaction unit is denoted by InteractionFragment (Object Management Group 2003).

A combined fragment, denoted by CombinedFragment (Object Management Group 2003),

Algorithm 1 Generation of CTS

CTSConfList ¼ { } //Contains all the configurations of the resulting CTS
CTSTransList ¼ { }// Contains all the transitions of the resulting CTS
FoundConfList ¼ {initialConf} //List of the configurations that have to be explored
NextTransList ¼ { } //List of transitions originating from the CurrentConf for all the events
EventList //All sensitive events for the state machine
while FoundConfList is not empty do
CurrentConf ¼ pop(FoundConfList)
if CurrentConf not in CTSConfList then
CTSConfList ¼ CTSConfList < CurrentConf

else
continue

end if
NextTransList ¼ getNext(CurrentConf,EventList)
for all nextTrans in NextTransList do
nextConf ¼ getDestination(nextTrans)
FoundConfList ¼ FoundConfList < nextConf

end for
CTSTransList ¼ CTSTransList < NextTransList

end while

Y. Jarraya et al.728

www.manaraa.com

is a specialisation of InteractionFragment that has an interaction operator with at least one

operand. Seq, Alt, Opt, Par and Loop are examples of CombinedFragment. The interaction

between lifelines is represented by message exchange. More specifically, it represents a

communication (e.g. raising a signal, invoking an operation, creating or destroying an

instance of an object).

Generally, the sequence diagram can be used to capture attributes such as latency and

precedence. By extracting all possible execution paths of a given sequence diagram, we

can construct its corresponding CTS. To proceed to the generation of the corresponding

CTS, first, we have to encode the messages in a particular syntax. Each exchanged

message Msg is written in the following format: S_Msg_R, where the sender of Msg is

denoted by S and the receiver by R. In this case, a configuration is composed of the set of

messages sent in parallel (separated by a comma). Messages enclosed in a

CombinedFragment of type Alt represent multiple branching successor configurations.

Messages enclosed in a CombinedFragment of type Loop represent a cycle of

configurations in the CTS. Messages that are not enclosed in any CombinedFragment, but

in Seq, represent, respectively, a singleton configuration. The transitions are derived from

the sequencing events between messages in a sequence diagram.

In order to generate the CTS corresponding to the sequence diagram, an algorithm

similar to Algorithm 1 is applied. Briefly, the modified algorithm consists of discarding the

EventList, and changing both auxiliary functions getNext and getDestination. The latter

are used to explore the dependent subsequent configurations in a sequence diagram

according to the sequentially identified CombinedFragment.

3.4 CTL-based property specification

The verification process by means of model checking requires the precise specification of

the properties in order to unfold the potential benefits of this technique. The NuSMV

model checker uses the CTL (Dasgupta et al. 2002; Queiroz 2003) temporal logic for this

purpose. This logic has interesting features and a great expressiveness. It can be used to

express general safety and liveness as well as more advanced properties like conditional

reachability, deadlock freedom, sequencing, precedence, etc. In the following paragraphs,

we briefly introduce the CTL logic and its operators.

CTL is used to reason about the computation tree that is unfolded from a given state

transition graph, where the various paths in a computation tree represent all possible

computations of the corresponding model. CTL is classified as a branching-time logic

since it has operators that allow the description of properties on the branching structure of

the computation tree. The related properties are built using atomic propositions,

propositional logic boolean connectives and temporal operators. The atomic propositions

correspond to the variables in the model while each temporal operator consists of two

components: a path quantifier and an adjacent temporal modality. The temporal operators

are interpreted in the context of an implicit current state. Since in general it is possible to

have many execution paths starting at the current state, the path quantifier indicates

whether the modality defines a property that should hold for all the possible paths

(universal path quantifier A) or only on some of them (existential path quantifier E).
Figure 3 presents the syntax of CTL formulas, while Table 1 explains the underlaying

meaning of the temporal modalities.

In order to relieve the load of knowledge of formal logics from the designer’s side, we

elaborated a pragmatics on top of the CTL logic, which enables the manual specification of

properties using our V&V framework. This pragmatics is based on intuitive macros

International Journal of General Systems 729

www.manaraa.com

(e.g. ALWAYS, MAYREACH, etc.) that are systematically expanded to their corresponding

CTL-based formulas.

3.5 Model checking

The back-end processing for CTS model checking requires its encoding in the NuSMV

input language. It basically involves a grouping in three main syntactic declarative

divisions9 as follows. First we need a syntactic block wherein the state variables are

defined along with their type and range. Secondly, we have to specify an initialisation

block, wherein the state variables are given their corresponding initial values or a range of

possible initial values. Third, we have to describe the dynamics of the transition system in

a so called next clause block, wherein the logic governing the evolution of the state

variables is specified. Consequently, the state variables are updated in every next step

based on the logical valuation done at the current step.

Since the CTS dynamics is given in the form of pairwise configuration transition

relations, any given CTS transition links a source configuration to a destination one. It is

conceivable that we could encode each configuration as a distinct entity in the NuSMV

model. However, one can note that the number of CTS configurations may be significantly

higher than the number of states that are members of different configurations. Also, the

properties to be verified ought to be expressed on states and not on configurations. Thus, in

order to encode the CTS representation into the model checker language in a compact and

meaningful way, we need to use as dynamic entities, the configuration states rather than

the configurations themselves. This will be reflected accordingly in all three declarative

blocks. The first one consists of enumerating the labels that are associated with each

dynamic element that appears in at least one configuration along with its type and range.

The second declarative block is compiled by using the initial configuration in order to

specify the initial values. The third one is more laborious in nature and consists of

analysing the CTS transitions in order to determine its state based evolution.

For every state s contained in any given configuration, which might be a destination

for at least one or more transitions, the required conditions for the activation of s need to

be specified for each incoming transition. Moreover, in the absence of these conditions,

s should be deactivated. The aforementioned activation conditions can be expressed as

boolean predicates in the form of conjunctions over the active status belonging to each

state in the corresponding source configuration along with the test term for the transition

trigger if it is the case. In the more general case where the source configuration elements

Figure 3. CTL syntax.

Table 1. CTL modalities.

Gp Globally, p is satisfied for the entire subsequent path
Fp Future (eventually), p is satisfied somewhere on the subsequent path
Xp neXt, p is satisfied at the next state
p U q Until, p has to hold until the point that q holds and q must eventually hold

Y. Jarraya et al.730

www.manaraa.com

might contain multiple value state variables, the activation condition predicates would also

include value test terms for the corresponding multivalued variables. Consequently, for

each state variable in the configurations of the CTS, we have to specify what we denote as

transition candidates. Specifically, a candidate for each state s, represents the disjunctive
combination over the activation conditions of all the destination configurations that have s
as a member. After running the NuSMV model checker, the corresponding output is

analysed by our V&V framework in order to identify which properties are satisfied in the

model. In the case where a specified property fails, the model checker provides a

trace-based counterexample that falsifies the property.

Figure 4 depicts a small fragment of the NuSMV code that is generated for a subset of

the state machine diagram case study illustrated in Figure 8. In Sections 1 and 2, we show

the application of our approach with respect to verifying behavioural diagrams. In the next

section, we present the metrics computation related to our approach.

3.6 Metrics computation

In order to asses the quality of an object-oriented system, we need to measure various

attributes such as complexity, understandability, maintainability, stability and others.

The obtained values are compared against corresponding nominal ranges that represent

empirically established intervals denoting a good design. Figure 5 depicts a snapshot of the

metric computation component of our V&V tool.

In the following paragraphs, we detail some of the most relevant metrics along with

some comments about their usefulness.

The set of six MOODs that Chidamber and Kemerer (1994) proposed, aims to assess

the complexity by measuring different quality attributes such as maintainability,

reusability, etc. However, only a subset, as depicted in Table 2, of three metrics can be

applied on UML class diagrams:

. Coupling between object (CBO) classes measures the level of coupling among the

classes in the diagram. Excessive coupling hinders modularity and prohibits reuse

and maintainability.

. Depth of inheritance tree (DIT) represents the length of inheritance tree from a class

to its root class. Deep inheritance results in a relatively high number of methods for

the specialised classes and increases the complexity.

. Weighted methods per class (WMC) is the summation of the complexity of all

methods in the class. A high WMC value indicates increased complexity and less

reusability. If unity is taken as the complexity of each method, then WMC is

considered as the number of methods in the class.

The MOOD (Table 3) proposed by Abreu and Melo (1996) targets the structural

mechanisms of the object-oriented paradigm such as encapsulation and inheritance:

. Method hiding factor (MHF) is a measure of the encapsulation in the class. It is the

ratio of the sum of hidden methods (private and protected) to the total number of

methods defined in each class. A high MHF value indicates potential accessibility

and reusability issues whereas a zero value indicates encapsulation issues.

. Attribute hiding factor (AHF) is the average of the data hiding in the class diagram.

It is the ratio of the sum of hidden attributes (private and protected) for all the

classes to the sum of all defined attributes. A high AHF value indicates appropriate

data hiding.

International Journal of General Systems 731

www.manaraa.com

Figure 4. NuSMV code fragment.

Y. Jarraya et al.732

www.manaraa.com

. Method inheritance factor (MIF) and attribute inheritance factor (AIF) are two

metrics that measure the class inheritance degree. MIF is the ratio of all inherited

methods in the class diagram to total number of methods in the diagram. Likewise,

AIF is the ratio of all inherited attributes in the class diagram to the total number

attributes in the diagram. For both metrics, a zero value indicates no inheritance

usage, which is undesired unless the class is a utility or a base class in the hierarchy.

. Polymorphism factor (POF) is a measure of method overriding. It is the ratio

between the number of overridden methods in a class and the maximum number of

methods that can be overridden in that class.

. Coupling factor (COF) measures the coupling level. It is the ratio between the actual

couplings among all classes and the maximum number of possible couplings among

all the classes. Coupling is present whenever a class is accessing the methods or

members of another class. High values of COF indicate tight coupling and potential

maintainability and reusability issues.

The set of metrics proposed by Lorenz and Kidd (1994) can be used to asses the static

characteristics of software design such as size and inheritance. A subset of these metrics

targeted the class size. The first size metric is the public instance methods and it represents

the count of public methods in a class. The second metric is the number of instance

methods and is the count of all methods in a class. The last metric, number of instance

variables counts the total number of variables in a class. Another set of metrics addresses

the class inheritance usage degree. The first is called the Number of Methods Overridden

(NMO) metric and it gives a measure of the number of methods overridden by a subclass.

The second is the NMI and it corresponds to the total number of methods inherited by a

subclass. Additionally, the Number of Methods Added metric counts the methods added in

Figure 5. Tool snapshot: metric summary.

Table 2. Chidamber and Kemerer (1994) object-oriented metric suite.

CBO The level of coupling among the classes.
DIT The length of inheritance links from a class to its root.
WMC The sum of the complexity of all methods in the class.

International Journal of General Systems 733

www.manaraa.com

a subclass. Finally, the NMO and DIT (Chidamber and Kemerer 1994) metrics are used to

calculate the specialisation index of a class, which gives an indication of the class

inheritance utilisation.

The three metrics for UML package diagram proposed Martin (1994), namely the

instability (I), abstractness (A) and distance from main sequence (DMS), measure the

interdependencies among packages. Highly interdependent packages tend to be inflexible

and thus hardly reusable and maintainable. The Instability metric measures if a package

depends more on other packages than they depend on it. The Abstractness metric is a

measure of the package’s abstraction level. The DMS metric measures the balance

between the abstraction and instability.

4. Case study

In the following paragraphs, we present a case study related to a UML 2.0-based design

describing an ATM. We perform V&V of the design with respect to predefined properties

and requirements. We present hereafter the behavioural view of the design captured in

sequence and a state machine diagrams.

The ATM interacts with a potential customer (user) via a specific interface and

communicates with the bank over an appropriate communication link. A user that requests

a service from the ATM has to insert his ATM card and to enter his personal identification

number (PIN). Both pieces of information are needed in order to be sent to the bank for

validation. If the credentials of the customer are not valid, the card will be ejected.

Otherwise, the customer will be able to perform one or more bank transactions (e.g. cash

advance or bill payment). The card will be retained in the machine during the customer

interaction until the customer wishes no further service.

4.1 Sequence diagram

The sequence diagram presented hereafter depicts one possible execution scenario of the

interaction between three actors: the User, the ATM and the Bank. Though there are

other possible execution scenarios, we will focus only on the one shown in Figure 6.

The diagram comprises three main CombinedFragment (illustrated by labelled boxes):

two are related to the authentication process and one to a banking operation. The label on

each box denotes the corresponding interactionOperator, which specifies the semantics of

the CombinedFragment. For instance, the label par indicates that the CombinedFragment

represents a parallel execution between the behaviours of the operands. For the case

of the label alt, it designates a choice of behaviour among the specified operands.

The first CombinedFragment captures the validation of the card and a request of the PIN.

The second one is an alternative choice that captures the validation of the PIN.

The subsequent CombinedFragment depicts a possible interaction of using a cash advance

service in the case where the credentials are valid.

Table 3. Abreu et al. object-oriented metric suite.

MHF Measure of the encapsulation in the class.
AHF The average of the data hiding.
MIF The class inheritance degree.
AIF The class inheritance degree.
POF The method overriding.
COF The coupling level.

Y. Jarraya et al.734

www.manaraa.com

In order to assess this diagram, we derive its corresponding semantic model, which is

the CTS depicted in Figure 7. Since deadlock and reachability properties are generic

specification, we only present some relevant properties such as service availability and

safety. We describe each of them in two different notations: macro and CTL.

alt

alt

par

insertCard

verifCard()

CardStatus

waitPIN

PIN

verifPIN()

PINStatus

ejectCard

ejectCard

[PINok = False or Cardok=False]

[Cardok=True]

waitAccount

Account

waitOperation

opt

CashAdvance(Amount)
checkBalance(Amount)

balanceStatus

ejectCard

alt [BalanceOk=True]
Debit()

pickCash

InsuffFunds

back

ATM BANKUser

Figure 6. ATM sequence diagram example.

International Journal of General Systems 735

www.manaraa.com

The first property (1) is a service availability specification. It asserts that always, if

the user inserts his card, then a situation where the ATM advances cash should be

reachable

Macro : ALWAYSU�insertCard�A ! MAYREACHA�pickCash�U

CTL : AGðU�insertCard�A ! E½!ðendÞUA�pickCash�U�Þ:
ð1Þ

The second one (2) is a safety property. It asserts that whenever the credentials

are not valid, there should be no possibility for the user to request a banking

operation:

Macro : ALWAYS ð!CardOk or !PINOkÞ! !MAYREACH ðA�waitAccount �UÞ

CTL : AGðð!Cardok or !PINOkÞ! !ðE½!ðendÞUA�waitAccount�U�ÞÞ:
ð2Þ

The third one (3) is related to an ergonomic specification stating that whenever

the specified amount exceeds the available funds, it should be possible for the user

!balOK

!cardOK

balOK

PINOk

cardOk

start

U_insertCard_A

A_verifCard_B, A_waitPIN_U

B_cardStatus_A, U_inputPIN_A A_verifPIN_B

B_PINStatus_A A_waitAccount_U

U_selAccount_A

A_waitOperation_UU_cashAdv_A

A_checkBal_B

B_balStatus_A A_insuf_U

A_debit_B

A_pickCash_U

U_back_AA_ejectCard_U

end

!PINOk

Figure 7. The CTS of the ATM sequence diagram example.

Y. Jarraya et al.736

www.manaraa.com

to request a new cash advance operation (the user might want to correct the amount):

Macro : ALWAYSA�insufFunds�U ! POSSIBU�CashAdvance�A

CTL : AGðA�insufFunds�U ! EXðU�CashAdvance� AÞÞ:
ð3Þ

When subjecting the sequence diagram to V&V task, we found that only the first two

properties are satisfied. However, the model checker was able to produce a

counterexample for the third property. The interpreted result of the trace provided by

the model checker consists in the following path in the CTS:

start; U_insertCard_A; (A_verifCard_B, A_waitPIN_U);

(B_cardStatus_A, U_inputPIN_A); A_verifPIN_B; B_PINStatus_A;

A_waitAccount_U; U_selAccount_A; A_waitOperation_U; U_cashAdv_A;

A_checkBal_B; B_balStatus_A; A_insuf_U; U_back_A;

As a notation convention, the identified path contains a series of semicolon-separated

messages that are exchanged between the actors. Hence, when analysing the

counterexample, one can note that there is no possibility of reaching the state

U_cashAdv_A from the state A_insuf_U. Thus, we can conclude that the sequence

diagram does not comply with this requirement.

4.2 State machine diagram

The state machine diagram, as defined by UML 2.0 standard, is an object-oriented variant

of Harel state charts (Object Management Group 2003). It is used to model discrete event-

driven behaviour of reactive systems. In this section, we explain how our V&V approach is

performed on a given state machine diagram.

Figure 8 shows an example of UML 2.0 state machine diagram of the ATM system.

The model is based on a hypothetical behaviour and is meant only as an example.

We intendedly modelled some flaws in the design in order to outline the usefulness of our

approach in discovering problems in the behavioural model. The diagram has several

states that are going to be presented in accordance to the diagram containment hierarchy.

The top container state ATM encloses four substates: IDLE, VERIFY, EJECT and

OPERATION. The IDLE state, wherein the system waits for a potential ATM user, is the

default initial substate of the top state. The VERIFY state represents the verification of the

card validity and authorisation. The EJECT state depicts the phase of termination of

the user transaction. The OPERATION state is a composite state that includes the states

that capture several functions related to banking operations, which are the SELACCOUNT,
PAYMENT and TRANSAC.

The SELACCOUNT state is where an account, belonging to the proprietary of the card,

has to be selected. When the state SELACCOUNT is active, and the user selects an account,

the next transition is enabled and the state PAYMENT is entered. The latter has two

substates for cash advancing and bill payment, respectively. It represents a two-itemmenu,

controlled by the event next. Finally, the TRANSAC state captures the transaction phase

and includes three substates for checking the balance (CHKBAL), modifying the amount if

necessary (MODIFY) and debiting the account (DEBIT). Each one of the states PAYMENT
and TRANSAC contains a shallow history pseudostate. If a transition targeting a shallow

history pseudostate is fired, the activated state is the most recent active substate in the

composite state containing the history connector.

International Journal of General Systems 737

www.manaraa.com

By applying our approach, we obtain as intermediate result the semantic model

(CTS depicted in Figure 9) corresponding to the given state machine diagram. Each

configuration is represented by a set (possibly singleton) of states and variable values of

the state machine diagram. In the same time, deadlock and reachability properties are

automatically generated for every state in the diagram. Thereafter, user-defined

specification that are entered by the user in macro notation, are automatically expanded

into CTL formulas and appended to the input of the model checker. Once the model

checking procedure terminates, the assessment results pinpointed some interesting

problems in the ATM state machine design.

The model checker determined that the OPERATION state exhibits deadlock, meaning

that once entered, it is never left. This is due to the fact that, according to the semantic of

UML state machine diagrams, the transitions with the same trigger are given higher

priority when the source state is deeper in the containment hierarchy. Moreover, the

back

next

next

insuf
balOk

back

pinOk

else

cardOk

OPERATION

IDLE

insert
VERIFY

CHKCARD

CHKPIN

VERIFCARD

VERIFYPIN

CARDVALID

PINVALID

PININVALID

EJECT

SELACCOUNT

PAYMENT

CASHADV BILLPAY

TRANSAC

DEBITCHKBALMODIFY
H

H

ATM

else

else

select

back

pinChkDone

Figure 8. ATM state machine diagram example.

Y. Jarraya et al.738

www.manaraa.com

transitions that have no event are fired as soon as the state machine reaches a stable

configuration that is containing the corresponding source state. This is precisely the case

with the transition from SELACCOUNT to PAYMENT. Thus, there is no configuration that

allows the OPERATION state to be exited. This is clearly observable when looking at the

corresponding CTS where we can notice that once a configuration containing the

OPERATION state is reached, there is no transition to a configuration that does not contain

it. We present hereafter, some relevant user-defined properties described in both macro

and CTL notations and their corresponding model checking results.

The first property (1) asserts that it is always the case that if the VERIFY state is

reached then from that point, the OPERATION state should be also reachable:

Macro : ALWAYSVERIFY ! MAYREACHOPERATION

CTL : AGðVERIFY ! ðE½!ðIDLEÞUOPERATION�ÞÞ:
ð1Þ

Figure 9. CTS of the ATM state machine example.

International Journal of General Systems 739

www.manaraa.com

The next property (2) asserts that whenever the state OPERATION is reached, it should be

unavoidable to reach the state EJECT at a later point:

Macro : ALWAYSOPERATION ! INEVITEJECT

CTL : AGðOPERATION ! ðA½!ðIDLEÞUEJECT�ÞÞ
ð2Þ

The last one (3) states that the CHKBAL state must precede the state DEBIT:

Macro : CHKBALPRECEDEDEBIT

CTL : !E½!ðCHKBALÞUDEBIT�
ð3Þ

The property (1) turned out to be satisfied when running the model checker. However,

the last two properties (2) and (3) failed. The failure of the property (2) was not unexpected

since, from the automatic specifications, we noticed that state OPERATION is never left

once entered (it exhibits deadlock) and it does not have the state EJECT as a substate.

The failure of the last property (3) was demonstrated by a counterexample provided by

the model checker. Though the model checker can provide a counterexample for any of the

failed properties, we present this last one as it captures a critical unintended behaviour.

The result was parsed by our tool into a trace, as follows:

IDLE [!cardOk,!pinOk];

(VERIFY,CHKCARD,VERIFCARD,CHKPIN,VERIFPIN [cardOk,pinOk]);

(VERIFY,CHKCARD,CARDVALID,CHKPIN,VERIFPIN [cardOk,pinOk]);
(VERIFY,CHKCARD,CARDVALID,CHKPIN,PINVALID [cardOk,pinOk]);

(OPERATION,SELACCOUNT [cardOk,pinOk]);

(OPERATION,PAYMENT,CASHADV [cardOk,pinOk]);

(OPERATION,TRANSAC,DEBIT [cardOk,pinOk]);

The foregoing counterexample is represented by a series of configurations separated

by semicolons. Additionally, a comma is used to separate two or more states that are

present simultaneously in a given configuration and the variable values are enclosed in

square brackets. The failure of the last property is due to the presence of a transition from

the state PAYMENT to the shallow history connector of the state TRANSAC. This allows for
the immediate activation of the state DEBIT when reentering the TRANSAC state by its

history connector.

The counterexample can help the designer to infer the necessary changes that will fix

the identified problems. In order to do that, the first modification consists of adding a

trigger event such as select to the transition from the state SELACCOUNT to the state

PAYMENT. This will fix the deadlock problem and the second user-defined property (2).

Another modification is required to correct the problem related to the last unsatisfied

specification property (3). It consists of removing the history connector of the state

TRANSAC and changing the incoming transition from this target directly to the state

TRANSAC. After re-executing the V&V task for the fixed diagram, all the specifications

that were defined automatically or by the user were satisfied.

4.3 Programme analysis integration

This section discusses the use of programme analysis techniques (data and control flow),

on the semantic model, namely the CTS. Our goal is to identify and extract those parts

Y. Jarraya et al.740

www.manaraa.com

of the CTS that exhibit properties that can be used to simplify the transition system. This in

turn has the potential to leverage the effectiveness of the model checking procedure.

The aspects that we are interested in are the data and control flow. The former is applied by

basically searching for the presence of invariants whereas the latter is used in order to

detect the control flow dependency among various parts of the transition system.

In order to illustrate data and control flow analysis on the CTS, we will use the CTS

corresponding to the state machine of Figure 9. In this example, in every configuration there

are various values for the variables cardOk and pinOk. Whenever we have an

exclamation mark preceding a variable in a particular configuration, it means that the

variable has a false value in that configuration. There are several parts of the graph where

some invariants hold. Figure 10 presents three subgraphs, each having invariants that can be

abstracted. Thus, the subgraph of Figure 10(a) has the invariant !cardOk. Similarly, the

subgraph of Figure 10(c) contains the invariant !pinOk. Another subgraph presented

insert

insert

insert

IDLE
[!pinOk]

IDLE
[!cardOK]

IDLE
[!pinOk,!cardOK]

VERIFY
CHKCARD

VERIFCARD
CHKPIN

VERIFPIN
[pinOk]

VERIFY
CHKCARD

CARDVALID
CHKPIN

VERIFPIN
[!cardOK]

VERIFY
CHKCARD

CARDVALID
CHKPIN

PINVALID
[!cardOK]

VERIFY
CHKCARD

VERIFCARD
CHKPIN

VERIFPIN
[!cardOK]

VERIFY
CHKCARD

VERIFCARD
CHKPIN

VERIFPIN
[pinOk,!cardOK]

EJECT
[pinOk]

EJECT
[!cardOK]

EJECT
[pinOk,!cardOK]

(a) (b)(c)

pinChkDone

Figure 10. Data flow subgraphs. (a) Data flow subgraph with !cardOK invariant. (b) Data flow
subgraph with !pinOK and !cardOK invariants. (c) Data flow subgraph with !pinOK invariant.

select

select

balOk

back
next

next

back
select

insuf

back

pinChkDone
insert

IDLE
[!cardOk,!pinOk]

VERIFY
CHKCARD

VERIFCARD
CHKPIN

VERIFPIN
[cardOk,pinOk]

VERIFY
CHKCARD

CARDVALID
CHKPIN

VERIFPIN
[cardOk,pinOk]

VERIFY
CHKCARD

CARDVALID
CHKPIN

PINVALID
[cardOk,pinOk]

OPERATION
SELACCOUNT
[cardOk,pinOk]

OPERATION
PAYMENT
CASHADV

[cardOk,pinOk]

OPERATION
TRANSAC
CHKBAL

[cardOk,pinOk]

OPERATION
TRANSAC
MODIFY

[cardOk,pinOk]

OPERATION
PAYMENT
BILLPAY

[cardOk,pinOk]

OPERATION
TRANSAC

DEBIT
[cardOk,pinOk]

Figure 11. Control flow subgraph.

International Journal of General Systems 741

www.manaraa.com

in Figure 10(b) with the invariants!cardOk and!pinOk. Additionally, Figure 11 depicts
a subgraph that is independent from the control flow perspective. To that effect, once the

control is transferred to this subgraph, it never leaves it.

The subgraphs identified in the foregoing paragraph represent the basis that enable us

to slice (decompose) the initial model into several independent parts that can be analysed

separately. Obviously, the subgraphs have reduced complexity when compared to the

original model. Accordingly, for each of them, the corresponding transition system that is

going to be subjected to model checking requires fewer resources in terms of memory

space and computation time. Though it might be possible to specify some properties that

could span across more than one subgraph of the original CTS, the slicing can be safely

done under the following assumptions:

. The properties to be verified fall into liveness or safety category;

. No property specification should involve sequences or execution traces that

require the presence of the initial state more than once.

It must be noted that the second constraint does not represent a major hindrance for the

verification potential. In this respect, the presence of invariants is assuring that revisiting

the initial state or entering it for the first time is equivalent with respect to the dynamics of

the transition system. In order to emphasise the benefits of the slicing procedure, we give

some edifying statistics. While for the initial CTS graph, the model checker allocated

between 70 and 80 thousand binary decision diagram (BDD) nodes (depending on the

variable ordering), for the sliced subgraphs the allocated BDD nodes were significantly

reduced as shown in Table 4.

It must be mentioned at this point that even though some of the configuration subgraphs

are very simple, it is nevertheless required for the model checking procedure that one

specifies all the elements of the original model. However, this must be done such that the

underlying dynamics is captured by the particular configuration subgraph in question.

Moreover, due to the fact that the dynamics may be severely restricted in some cases, one

has to take this fact into account when interpreting the model checking results. Thus, even

though it might be the case that a liveness property fails for a transition system

corresponding to a particular subgraph, the property should not be declared as failed for the

original model as long as there is at least one subgraph whose transition system satisfies the

property in question. Conversely, whenever a safety property fails for a particular subgraph,

then it is declared as failed for the original model as well. Notwithstanding, this task can be

automated and virtually transparent to the front-end of the verification framework.

5. Conclusion and future work

In this paper, we reported a synergistic approach for the V&V of object-oriented design

models in SwE and SE. The ingredients are three well-established techniques: model

Table 4. Statistics related to memory consumption during model checking.

Graph Memory footprint (BDD nodes)

Figure 9 70,000–80,000
Figure 10(a) <4000
Figure 10(b) <4000
Figure 10(c) <8000
Figure 11 28,000–33,000

Y. Jarraya et al.742

www.manaraa.com

checking, static analysis and software metrics. Harmoniously combined, these techniques

make the V&V task more comprehensive and cost-effective. In fact, we can assess a

design model from both structural and behavioural perspectives using metrics and model

checking. We illustrated the synergy by applying static analysis (control and data flow) on

the semantic model, before performing the model checking procedure. Currently, we are in

the process of investigating the use of metrics for the semantic model complexity

measurement. As future work, we intend to explore other aspects of the synergy and to

undertake more elaborated case studies. Furthermore, we plan to conduct other case

studies for assessing design models involving SysML 1.0 diagrams.

Acknowledgements

This research is the result of a fruitful collaboration between the Computer Security Laboratory
(CSL) at Concordia University and Defence Research and Development Canada (DRDC).
The research is supported by the CapDEM (Collaborative Capability Definition, Engineering and
Management) project.

Notes

1. Email: a_soeanu@encs.concordia.ca
2. Email: l_alawne@encs.concordia.ca
3. Email: debbabi@encs.concordia.ca
4. Email: Fawzi.Hassaine@drdc-rddc.gc.ca
5. http://www.cs.bham.ac.uk/,dxp/prism/
6. http://www-omega.imag.fr/
7. http://www.artisansw.com
8. http://www.informatik.uni-bremen.de/uDrawGraph/en/index.html
9. One might use more convenient NuSMV constructs or various levels of hierarchy where a main

module is referring several other sub-modules due to the modular aspect that some particular
transition systems might exhibit. However, this has no semantic impact with respect to the
considered declarative divisions.

Notes on contributors

Yosr Jarraya is a PhD candidate in Electrical and Computer Engineering

at Concordia University, Montreal, Quebec, Canada. She is also a research

assistant in the Computer Security Laboratory (CSL) at Concordia Institute

for Information Systems Engineering. She holds MSc degree in

Telecommunications from École Supérieure des Communications de

Tunis, Tunisia. The main topic of her current research activities is the

verification and validation of systems and software design models

expressed using UML and SysML including timed and probabilistic

behaviour verification.

Andrei Soeanu graduated from Concordia University where he obtained a

Masters Degree from the faculty of Electrical and Computer Engineering in

the area of Software Intensive Systems Engineering. He participated in

research activities sponsored by the Defense Research and Development

Canada (DRDC) on various topics including System Engineering,

Modelling Languages as well as Verification and Validation of design

models.

International Journal of General Systems 743

www.manaraa.com

Luay Alawneh is a PhD student in Software Engineering at Concordia

University in Montreal, Canada. His PhD research topic is specialised in

Metamodeling and Dynamic Analysis of various runtime execution traces.

He holds a Master’s degree in Verification and Validation of Software and

Systems engineering design models from Concordia University. Luay

Alawneh has more than 7 years of professional experience as a software

developer. Currently, he is working as an ERP and CRM Solutions

Developer in TekSystems Inc – Montreal for Rockwell Automation,

a global automation leader.

Dr Mourad Debbabi is a Professor and the Director of the Concordia

Institute for Information Systems Engineering, Concordia University,

Montreal, Quebec, Canada. He holds the Concordia Research Chair Tier I

in Information Systems Security. He is the founder and one of the leaders

of the Computer Security Laboratory (CSL) at Concordia University. He is

the Specification Lead of four Standard JAIN (Java Intelligent Networks)

Java Specification Requests (JSRs) dedicated to the elaboration of standard

specifications for presence and instant messaging. In the past, he served as

Senior Scientist at the Panasonic Information and Network Technologies

Laboratory, Princeton, New Jersey, USA; Associate Professor at the

Computer Science Department of Laval University, Quebec, Canada; Senior Scientist at General

Electric Research Center, New York, USA; Research Associate at the Computer Science Department

of Stanford University, California, USA; and Permanent Researcher at the Bull Corporate Research

Center, Paris, France. Dr Debbabi holds PhD and MSc degrees in computer science from Paris-XI

Orsay, University, France. He published more than 150 research papers in journals and conferences

on computer security, formal semantics, Java security and acceleration, cryptographic protocols,

malicious code detection, programming languages, type theory and specification and verification of

safety–critical systems. He supervised to completion more than50 graduate students at MSc and

PhD levels. He can be reached at debbabi@ciise.concordia.ca. His webpage is at http://www.ciise.

concordia.ca/~debbabi

Dr Fawzi Hassaı̈ne holds a PhD and a Master degree in Computer Science

from Paris VI University. He spent more than ten years in various industrial

R&D centres working on distributed and parallel applications, real-time and

embedded systems, data acquisition and control systems. Dr Hassaı̈ne is

presently a Defence Scientist within the Defence Research and Development

Canada, the R&D establishment of Canada’s Department of National

Defence. His present research interests include: Synthetic Environments,

Distributed Simulation, Computer Generated Forces, Command and Control

and the application of formal and non-formal methods to the Verification and

Validation of Systems Engineering design models.

References

Abreu, F. and Carapua, R., 1994. Object-oriented software engineering: measuring and controlling
the development process. October. McLean, VA: American Society for Quality.

Abreu, F. and Melo, W., 1996. Evaluating the impact of object-oriented design on software quality.
Washington, DC: IEEE Computer Society, 90–99.

Alawneh, L., et al., 2006. A unified approach for verification and validation of systems and software
engineering models. Washington, DC: IEEE Computer Society, 409–418.

Y. Jarraya et al.744

www.manaraa.com

Ambler, S.W., 2004. The object primer 3rd edition: agile model-driven development with UML 2.0.
New York, NY: Cambridge University Press.

Averant, I., 2001. Static functional verification with solidify, a new low-risk methodology for faster
debug of ASICs and programmable parts, Technical report, Averant, Inc.

Ben-David, S., et al., 2000. Scalable distributed on-the-fly symbolic model checking.
Berlin/Heidelberg: Springer, 390–404.

Boehm, B.W. and Basili, V.R., 2001. Software defect reduction top 10 list. IEEE computer, 34 (1),
135–137.

Bozga, M., et al., 1999. IF: an intermediate representation and validation environment for timed
asynchronous systems. Berlin/Heidelberg: Springer, 307–327.

Briand, L.C., Devanbu, P.T. and Melo, W.L., 1997. An investigation into coupling measures for
Cþþ . New York, NY: ACM, 412–421.

Burch, J., et al., 1990. Symbolic model checking: 1020 states and beyond. Washington, DC: IEEE
Computer Society Press, 1–33.

Cengarle, M.V. and Knapp, A., 2004. UML 2.0 interactions: semantics and refinement. München:
Technische Universität München, 85–99.

Chidamber, S.R. and Kemerer, C.F., 1994. A metrics suite for object-oriented design. IEEE
transaction on software engineering, 20 (6), 476–493.

Cimatti, A., et al., 1999. NUSMV: a new symbolic model verifier. London: Springer, 495–499.
Dasgupta, P., Chakrabarti, A. and Chakrabarti, P.P., 2002. Open computation tree logic for formal

verification of modules. Washington, DC: IEEE Computer Society, 735.
Fecher, H., Kyas, M. and Schönborn, J., 2005. Semantic issues in UML 2.0 state machines,

Technical report 0507, Christian-Albrechts-Universität zu Kiel.
Genero, M., Piattini, M. and Calero, C., 2000. Early measures for UML class diagrams. L’Objet,

6 (4), 489–515.
Gronback, R., 2004. Model validation: applying audits and metrics to UML models, Borland

Developer Conference, Borland Software Corporation.
Grosu, R. and Smolka, S.A., 2005. Safety-liveness semantics for UML 2.0 sequence diagrams. June.

Washington, DC: IEEE Computer Society, 6–14.
Holzmann, G., 1997. The model checker SPIN. IEEE transaction on software engineering, 23 (5),

279–295. Special issue on formal methods in software practice.
Hsin-Hung, L., 2003. A research of model checking UML statechart diagrams. Master’s thesis.

Japan Advanced Institute of Science and Technology.
IEEE, 1990. IEEE Std 610.12-1990, IEEE standard glossary of software engineering terminology,

Technical report, IEEE.
INCOSE, 2004. The international council on systems engineering (INCOSE). Available from: http://

www.incose.org/practice/whatissystemseng.aspx [Accessed October 2008].
Jarraya, Y., et al., 2007. Automatic verification and performance analysis of time-constrained SysML

activity diagrams. Los Alamitos, CA: IEEE Computer Society, 515–522.
Knapp, A., Merz, S. and Rauh, C., 2002. Model checking – timed UML state machines and

collaborations. Berlin/Heidelberg: Springer, 395–414.
Latella, D., Majzik, I. and Massink, M., 1999a. Automatic verification of a behavioural subset of

UML statechart diagrams using the SPIN model checker. Formal aspects of computing, 11 (6),
637–664.

Latella, D., Majzik, I. and Massink, M., 1999b. Towards a formal operational semantics of UML
statechart diagrams. Deventer: Kluwer, B.V., 465.

Li, W. and Henry, S., 1993. Maintenance metrics for the object-oriented paradigm. Washington,
DC: IEEE Computer Society Press, 52–60.

Li, X., Liu, Z. and He, J., 2004. A formal semantics of UML sequence diagrams. April. Melbourne:
IEEE Computer Society, 13–16.

Lorenz, M. and Kidd, J., 1994. Object-oriented software metrics: a practical guide. Upper Saddle
River, NJ: Prentice-Hall, Inc.

Martin, R.C., 1994. OO design quality metrics. Available from: http://www.objectmentor.com/
resources/articles/oodmetrc.pdf.

McMillan, K.L., 1992. The SMV system, Technical report CMU-CS-92-131, Carnegie Mellon
University.

Mikk, E., et al., 1998. Implementing statecharts in PROMELA/SPIN. Washington, DC: IEEE
Computer Society, 90.

International Journal of General Systems 745

www.manaraa.com

NASA, 1995. Software quality metrics for object-oriented system environments. Technical report
SATC-TR-95-1001. Greenbelt, MA: National Aeronautics and Space Administration, Goddard
Space Flight Center.

Ober, I., Graf, S. and Lesens, D., 2006. Modeling and validation of a software architecture for the
Ariane-5 launcher. Vol. 4037. Lecture Notes in Computer Science. Berlin Heidelberg:
Springer, 48–62.

Ober, I., Graf, S. and Ober, I., 2003. Validating timed UML models by simulation and verification.
Workshop on Specification and Validation of UML Models for Real Time and Embedded
Systems (SVERTS’03), a satellite event of UML 2003, San Francisco, CA, October 2003.

OMG, 2003. UML 2.0 superstructure specification. Technical Report, Object Management Group.
http://www.omg.org/docs/ptc/03-08-02.pdf.

OMG, 2006. Systems modeling language (OMG SysML) specification. Technical Report, Object
Management Group, Final Adopted Specification of Systems Modeling Language (SysML).

Peled, D., 1994. Combining partial order reductions with on-the-fly model-checking. London:
Springer-Verlag, 377–390.

Queiroz, R.D., ed., 2003. Logic for concurrency and synchronisation. Norwell, MA: Kluwer
Academic Publishers.

Störrle, H., 2003. Semantics of Interactions in UML 2.0. IEEE Computer Society, 129–136.
Tugwell, G., et al., 1999. Metrics for full systems engineering lifecycle activities (MeFuSELA).

Brighton, UK.
Viehl, A., et al., 2006. Formal performance analysis and simulation of UML/SysML models for ESL

design. Munich: European Design and Automation Association, 242–247.
Zhan, X. and Miao, H., 2004. An approach to formalizing the semantics of UML statecharts.

Berlin/Heidelberg: Springer, 753–765.

Y. Jarraya et al.746

www.manaraa.com

www.manaraa.com

Copyright of International Journal of General Systems is the property of Taylor & Francis Ltd and its content

may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express

written permission. However, users may print, download, or email articles for individual use.

